A holographic inequality for N = 7 regions
نویسندگان
چکیده
A bstract In holographic duality, boundary states that have semiclassical bulk duals must obey inequalities, which bound their subsystems’ von Neumann entropies. Hitherto known inequalities constrain entropies of reduced on up to N = 5 disjoint subsystems. Here we report one new such inequality, involves 7 regions. Our work supports a recent conjecture the structure predicted existence and schematic form inequality. We explain logic educated guesses by arrived at comment feasibility employing similar tactics in more exhaustive search.
منابع مشابه
a cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولA NORM INEQUALITY FOR CHEBYSHEV CENTRES
In this paper, we study the Chebyshev centres of bounded subsets of normed spaces and obtain a norm inequality for relative centres. In particular, we prove that if T is a remotal subset of an inner product space H, and F is a star-shaped set at a relative Chebyshev centre c of T with respect to F, then llx - qT (x)1I2 2 Ilx-cll2 + Ilc-qT (c) 112 x E F, where qT : F + T is any choice functi...
متن کاملThe Robin Inequality for 7-free Integers
Recall that an integer is t-free if and only if it is not divisible by pt for some prime p. We give a method to check Robin’s inequality, σ(n) < eγn log log n, for t-free integers n and apply it for t = 6, 7. We introduce Ψt, a generalization of the Dedekind Ψ function defined for any integer t ≥ 2, by Ψt(n) := n ∏ p|n ( 1 + 1/p + · · · + 1/pt−1 ) . If n is t-free then the sum of divisor functi...
متن کاملRobin inequality for 7−free integers
Recall that an integer is t−free iff it is not divisible by p for some prime p. We give a method to check Robin inequality σ(n) < en log logn, for t−free integers n and apply it for t = 6, 7. We introduce Ψt, a generalization of Dedekind Ψ function defined for any integer t ≥ 2 by Ψt(n) := n ∏ p|n (1 + 1/p+ · · ·+ 1/p). If n is t−free then the sum of divisor function σ(n) is ≤ Ψt(n). We charact...
متن کامل2 00 7 Interacting Holographic Phantom
In this paper we consider the holographic model of interacting dark energy in non-flat universe. With the choice of c ≤ 0.84, the interacting holographic dark energy can be described by a phantom scalar field. Then we show this phantomic description of the holographic dark energy with c ≤ 0.84 and reconstruct the potential of the phantom scalar field.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of High Energy Physics
سال: 2023
ISSN: ['1127-2236', '1126-6708', '1029-8479']
DOI: https://doi.org/10.1007/jhep01(2023)101